Лабораторная работа №1 - Приобретение навыков работы с современным геодезическим оборудованием.

Цель работы: Получение навыков работы на электронным тахеометре

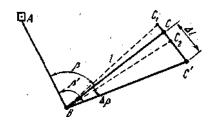
Методические рекомендации: Современный геодезический прибор - это продукт высоких технологий, объединяющий в себе последние достижения электроники, точной механики, оптики, материаловедения и других наук. К высокоточным современным и высокопроизводительным геодезическим средствам измерений относится новое поколение приборов, позволяющих выполнить все измерения в автоматизированном режиме.

Такие измерительные приборы снабжены встроенными вычислительными средствами и запоминающими устройствами, создающими возможность регистрации и хранения результатов измерений, дальнейшего их использования на ЭВМ для обработки. К таким приборам и относятся современные электронные тахеометры.

Задание:

- 1. Изучить устройство электронного тахеометра.
- 2. Научиться центрировать и горизонтировать электронный тахеометр
- 3. Выполнить съёмку.

Лабораторная работа № 2 Вынос проектного угла и длины линии


Цель работы: Приобрести практический навык по выносу проектного угла то исходной стороны и отложения проектного расстояния от исходного пункта.

Методические рекомендации: Разбивочные работы по существу сводятся к фиксации на местности точек, определяющих проектную геометрию сооружения. Плановое положение этих точек может быть определено с помощью построения на местности проектного угла от исходной стороны и отложения проектного расстояния от исходного пункта.

При построении проектного угла одна точка (вершина) угла и исходное направление заданы. Необходимо на местности отыскать второе направление, которое образовывало бы с исходным проектный угол β .

Работы провести в следующем порядке (см. рисунок)

- 1. Устанавливают теодолит в точке В.
- 2. Наводят зрительную трубу на точку А и берут отсчёт по лимбу.
- 3. Прибавляют к этому отсчёту проектный угол β.
- 4. Открепив алидаду, устанавливают вычисленный отсчёт.
- 5. Визирная ось зрительной трубы теодолита указывает искомое направление.
- 5. Откладывают проектное расстояние на местности и фиксируют точку С
- 6. Аналогичные действия выполняют при другом круге теодолита и отмечают на местности точку C_2 .
- 7. Из положения дух точек берут среднее (точка C), принимая угол ABC за проектный.

Залание.

Требуется перенести в натуру проектный угол $30^0~25^\prime$ и проектное расстояние 15, 5 м от исходного направления BA, для этого необходимо вычислить поправки, за температуру $\Delta_t = 0,0000125~(t-t_k)$, где t — температура ленты при измерениях, t_k - температура ленты при компарировании; за наклон $\Delta_v = 2d \sin^2 v / 2$, где v — угол наклона, d — горизонтальное проложение; за компарирования $\Delta_k = \Delta_{k1}~d$, где Δ_{k1} — поправка за компарирование ленты на 1м, взятая из уравнения ленты (+ 0,1 мм); а также суммарную поправку $\Delta_d = \Delta_t + \Delta_v + \Delta_k$.

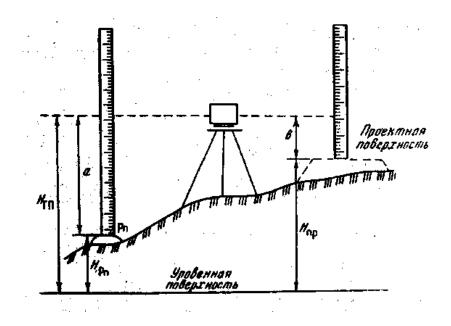
Вариант, выполняемой работы, определяется добавлением порядкового номера студента к заданному проектному углу и проектному расстоянию.

Осн: 9 [196 -199]

Контрольные вопросы:

- 1) Какой прибор используется при построении проектного горизонтального угла?
- 2) Что используется при построении горизонтального отрезка прямой линии?
- 3) Указать формулу поправки за наклон линии.

Лабораторная работа 3 - Прокладка замкнутого нивелирного хода.


Цель работы: Получение навыков работы с цифровым нивелиром

Задание:

- 1. Изучить устройство цифрового нивелира.
- 2. Выполнить рекогносцировку местности.
- 3. проложить замкнутый нивелирный ход.
- 3. Выполнить нивелировку.
- 4. Выполнить камеральные работы

Лабораторная работа №4 Перенесение на местность проектной отметки точки.

Цель работы: Приобрести практический навык по выносу проектной отметки точки. **Методические рекомендации:** При разбивочных работах часто возникает необходимость в выносе на местность заданной проектной отметки. Для этого выполняют следующие действия (см. рис.):

- 1. Находят на местности ближайший репер с известной отметкой Н.
- 2. Если расстояние от репера до места выноса меньше 150 м, то устанавливают нивелир между репером и колом.
- 3. Визирную ось трубы приводят в горизонтальное положение и берут отсчет a по рейке на репере.
 - 4. Горизонт инструмента на станции определяют по формуле: $\Gamma \mathbf{H} = \mathbf{H}_{\text{pen.}} + a$
- 5. Отсчёт в по рейке, соответствующей проектной отметке $H_{\text{в}}$ в точке B, определяют из выражения $\boldsymbol{\varepsilon} = \Gamma \mathcal{U}$ $H_{\text{в}}$.
- 6. Наводят трубу нивелира на рейку, установленную на кол, предварительно забитый в землю в точке B, делают отсчёт по рейке a.
- 7. Вычислив разность отсчётов (e e'), забивают кол до получения по рейке отсчёт e.

Задание.

Требуется перенести в натуру проектную отметку точки В. Отметка исходного репера $H_{\text{pen}} = 55,725$; проектная отметка точки В $H_{\text{B}} = 55,000$ м.

Вариант, выполняемой работы, определяется добавлением порядкового номера студента к заданной проектной отметки исходного репера (H_{pen}) и проектной отметки точки В (H_{B}) .

Контрольные вопросы:

- 1) Что такое горизонт инструмента?
- 2) Как определяется отсчет по рейке, при котором пятка рейки будет находиться на проектной отметке?
 - 3) Поверки нивелира.

Лабораторная работа 5. – Проектирование и разбивка строительной сетки в натуре.

Цель работы: Приобрести навыки по проектированию и разбивки строительной сетки.

Задание:

- 1. На генеральном плане выполнить проект геодезической строительной сетки
- 2. Подготовить данные для выноса строительной сетки в натуру
- 3. Подготовить теодолит, штатив, рейку, рулетку
- 4. Выполнить вынос в натуру проект геодезической сетки на учебном полигоне

Исходные данные:

Дирекционные углы и длины сторон

$$\alpha_{AB} = 104^{\circ}36'$$
 $l_{AB} = 800$ м

$$\alpha_{AC} = 14^{0}36' \ l_{AC} = 600 \ \text{M}$$

Координаты пунктов геодезической основы и точки А строительной сетки

	X	у
Шахта	12601,12	5092,17
Карьер	12244,91	6475,02
Пойма	13400,20	6702 09

Ход решения:

1. Вычисляем координаты В и С углов строительной сетки

$$X_B = X_A \pm d_{AB} \cdot \cos \alpha_{AB}$$

$$Y_B = Y_A \pm d_{AB} \cdot \sin \alpha_{AB}$$

$$X_C = X_A \pm d_{AC} \cdot \cos \alpha_{AC}$$

$$Y_C = Y_A \pm d_{AC} \cdot \sin \alpha_{AC}$$

$$X_B = 12217.00 - 800 \cdot \cos 104^{\circ}36' = 12015.345$$

$$Y_B = 5349.00 + 800 \cdot \sin 104^0 36' = 6123.167$$

$$X_C = 12217.00 + 600 \cdot \cos 14^{\circ}36' = 12797.626$$

$$Y_C = 5349.00 + 600 \cdot \sin 14^0 36' = 550.242$$

2. Вычисляем дирекционные углы на определенную точку:

$$tgr_{III-K} = \frac{\mathbf{Y}_K - \mathbf{Y}_{III}}{\mathbf{X}_K - \mathbf{X}_{III}}$$

$$r_{III-K} = arctg \frac{6475,02 - 5092,17}{12244,91 - 12601,12} = 75^{\circ}33'18,48''$$
 (II четверть)

$$\alpha_{III-K} = 180^{\circ} - 75^{\circ}33'18,48'' = 104^{\circ}26'41,52''$$

По знакам приращения координат определяем номер четверти в которой находится данная сторона.

3. Находим значение обратного угла

$$\alpha_{{\scriptscriptstyle K-I\!I\!I}}=\alpha_{{\scriptscriptstyle I\!I\!I}-K}\pm 180^{\scriptscriptstyle 0}$$

$$\alpha_{K-III} = 104^{\circ}26'41,52'' + 180^{\circ} = 284^{\circ}26'41,52''$$

$$tgr_{III-A} = \frac{\mathbf{Y}_A - \mathbf{Y}_{III}}{\mathbf{X}_A - \mathbf{X}_{III}}$$

$$r_{III-A} = arctg \frac{5349,00 - 5092,17}{12217,00 - 12601,12} = 33^{\circ}46'02,80''$$
 (II четверть)

$$\alpha_{III-A} = 180^{\circ} - 33^{\circ}46'02,80'' = 146^{\circ}13'57,20''$$

$$tgr_{K-A} = \frac{\mathbf{Y}_A - \mathbf{Y}_K}{\mathbf{X}_A - \mathbf{X}_K}$$

$$r_{K-A} = arctg \frac{5349,00 - 6475,02}{12217,00 - 12244.91} = 88^{\circ}34'48,48''$$
 (III четверть)

$$\alpha_{K-A} = 180^{\circ} + 88^{\circ}34'48,48'' = 268^{\circ}34'48,48''$$

4. Вычисляем разбивочные углы для перенесения точки А в натуру. Разбивочные углы всегда находят по разности дирекционных углов

$$\begin{split} \beta_{I\!I\!I} &= \alpha_{I\!I\!I-A} - \alpha_{I\!I\!I-K} \\ \beta_{I\!I\!I} &= 146^0 13' 57, 20'' - 104^0 26' 41, 52'' = 41^0 47' 15, 68'' \\ \beta_K &= \alpha_{K-I\!I\!I} - \alpha_{K-A} \\ \beta_K &= 284^0 26' 41, 52'' - 268^0 34' 48, 48'' = 15^0 51' 53, 04'' \\ \beta_A &= 360^0 - \alpha_{A-I\!I\!I} + \alpha_{A-K} \\ \beta_A &= 360^0 - 146^0 13' 57, 20'' + 180^0 + 88^0 34' 48, 48'' = 122^0 20' 51, 28'' \\ \text{Контроль: } \sum \beta = 180^0 \\ \sum &= 41^0 47' 15, 68'' + 15^0 51' 53, 04'' + 122^0 20' 51, 28'' = 180^0 \end{split}$$

5. Вычисляем горизонтальные расстояния до точки А

$$\begin{split} d_{\mathit{IIIA}} &= \frac{\Delta x}{\cos\alpha_{\mathit{IIIA}}}, \ d_{\mathit{IIIA}} = \frac{\Delta y}{\sin\alpha_{\mathit{IIIA}}}, \ d_{\mathit{IIIA}} = \sqrt{\Delta x^2 + \Delta y^2} \\ d_{\mathit{IIIA}} &= \frac{-384,12}{\cos146^013'57,20''} = 462,071 \ \text{m} \ , \ d_{\mathit{IIIIA}} = \frac{256,83}{\sin146^013'57,20''} = 462,071 \ \text{m} \ , \\ d_{\mathit{IIIA}} &= \sqrt{(-384,12)^2 + 256,83^2} - 462,071 \ \text{m} \ . \\ d_{\mathit{KA}} &= \frac{\Delta x}{\cos\alpha_{\mathit{KA}}}, \ d_{\mathit{KA}} = \frac{\Delta y}{\sin\alpha_{\mathit{KA}}}, \ d_{\mathit{KA}} = \sqrt{\Delta x^2 + \Delta y^2} \\ d_{\mathit{KA}} &= \frac{-27,91}{\cos268^034'48,48''} = 1126,366 \ \text{m} \ , \ d_{\mathit{KA}} = \frac{-1126,02}{\sin268^034'48,48''} = 1126,366 \ \text{m} \ , \\ d_{\mathit{KA}} &= \sqrt{(-27,91)^2 + (1126,02)^2} = 1126,366 \end{split}$$

6. При расчете длин сторон на знаки внимания не обращаем. Значение отчета на горизонтальном круге для вынесения в натуру точку А

$$\beta' = 360^{\circ} - \beta_{III}$$

 $\beta' = 360^{\circ} - 41^{\circ}47'15,68'' = 318^{\circ}12'44,32''$

7. Вычисляем разбивочные углы для перенесения точки В и С

$$\begin{split} \beta_A^B &= 360^{\circ} - (\alpha_{A-III} - \alpha_{AB}) \\ \beta_A^B &= 360^{\circ} - (146^{\circ}13'57,20'' + 180^{\circ} - 104^{\circ}36') = 138^{\circ}22'02,80'' \\ \beta_A^C &= 360^{\circ} - (\alpha_{A-III} - \alpha_{AC}) \\ \beta_A^C &= 360^{\circ} - (146^{\circ}13'57,20'' + 180^{\circ} - 14^{\circ}36') = 48^{\circ}22'02,80'' \\ \beta_A^B &= \beta_A^C = 90^{\circ} \\ 138^{\circ}22'02,80'' - 48^{\circ}22'02,80'' = 90^{\circ} \end{split}$$

Определяем элементы редуцирования.

1.Вычисляем

$$\Delta X = X_{\scriptscriptstyle A} - X_{\scriptscriptstyle A'}$$
 , $\Delta Y = Y_{\scriptscriptstyle A} - Y_{\scriptscriptstyle A'}$

$$\Delta X = 12217,00 - 12217,04 = -0.04$$
, $\Delta Y = 5349,00 - 5349,062 = -0.062$

2. Вычисляем $\alpha_{A'A}$

$$r_{A'A} = arctg \frac{\Delta Y}{\Delta X} = \frac{-0.062}{-0.04} = 57^{\circ}10'17.24''$$

$$\alpha_{A'A} = r_{A'A} = 57^{\circ}10'17.24''$$

3.Вычисляем длину перемещения

$$\begin{split} &d_{_{A'A}} = \frac{\Delta x}{\cos\alpha_{_{A'A}}}, \ d_{_{A'A}} = \frac{\Delta y}{\sin\alpha_{_{A'A}}}, \ d_{_{A'A}} = \sqrt{\Delta x^2 + \Delta y^2} \\ &d_{_{A'A}} = \frac{0.04}{\cos57^010'17.24''} = 0,074 \text{ m}, \ d_{_{A'A}} = \frac{0.062}{\sin57^010'17.24''} = 0,074 \text{ m}, \\ &d_{_{A'A}} = \sqrt{0.062^2 + 0.04^2} = 0.074 \text{ m}. \\ &r_{_{A'B'}} = arctg \frac{\Delta Y}{\Delta X} = arctg \frac{6123.200 - 5349.062}{12015.215 - 12217.04} = arctg \frac{774.138}{-201.825} = 75^023'15.79'' \text{ (II четверть)}. \\ &\alpha_{_{A'B'}} = 180^0 - 75^023'15.79'' = 104^036'44.21'' \\ &d_{_{A'B'}} = \frac{\Delta x}{\cos\alpha_{_{A'B'}}}, \ d_{_{A'B'}} = \frac{\Delta y}{\sin\alpha_{_{A'B'}}}, \ d_{_{A'B'}} = \sqrt{\Delta x^2 + \Delta y^2} \\ &d_{_{A'B'}} = \frac{-201.825}{\cos104^036'44.21''} = 800.014 \text{ m}, \ d_{_{A'B'}} = \frac{774.138}{\sin104^036'44.21''} = 800.014 \text{ m}, \\ &d_{_{A'B'}} = \sqrt{(774.138)^2 + (-201.825)^2} = 800.014 \text{ m} \end{split}$$

4. Вычисляем горизонтальный угол γ для перемещения точки A'

$$\gamma = \alpha_{A'B'} - \alpha_{A'A}$$

$$\gamma = 104^{\circ}36'44.21'' - 57^{\circ}10'17.24'' = 47^{\circ}26'26.97''$$

Лабораторная работа 6. – Закрепления на учебном полигоне геодезического пункта

Продолжение лабораторной работы № 5

Задание:

Закрепить пункты строительной сетки

Лабораторная работа 7 — Прокладка разомкнутого теодолитного хода с применением электронного теодолита.

Цель работы: Приобрести практические навыки работы с электронным тахеометром

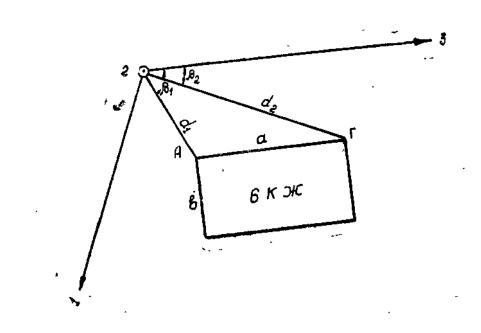
Задание:

- 1. Выполнить рекогностировку местности в районе реки Есентай.
- 2. Закрепить точки теодолитного хода.
- 3. Выполнить измерения.
- 4. Выполнить камеральные работы.

Лабораторная работа 8 – Прокладка нивелирного хода III класса

Цель работы: Приобрести практические навыки работы с цифровым нивелиром

Задание:


- 1. Выполнить рекогностировку местности в районе реки Есентай
- 2. Закрепить точки нивелироного хода
- 3. Выполнить нивелировку
- 4. Составить профиль трассы.

Лабораторная работа №9 Геодезическая подготовка к выносу основных осей проектируемого здания.

Цель работы: приобрести устойчивые навыки в определении координат точек и отрезков по плану с точностью масштаба плана, научиться решать и обратную геодезические задачи и составлять разбивочные чертежи.

Методические рекомендации: Вынос в натуру основных осей здания полярным способом сводится к построению углов β и откладыванию длин линий d на местности. С этой целью предварительно составляют разбивочный чертёж, на котором проставляют величины углов и длин линий, подлежащих перенесению.

1. Величины горизонтальных углов β_1 и β_2 определяют как разности дирекционных углов линий рабочего обоснования и линий 2 - A, $2 - \Gamma$.

2. Дирекционные углы линий обоснования известны до разбивки, дирекционные углы линий 2-A, $2-\Gamma$, а также расстояния d_1 , d_2 определяют путём решения обратных геодезических задач по формулам:

$$tg \, \alpha_{2-\Gamma} = \frac{Y_{\Gamma} - Y_{2}}{X_{\Gamma} - X_{2}};$$

$$d = \frac{X_{\Gamma} - X_{2}}{\cos \alpha_{2-\Gamma}} = \frac{Y_{\Gamma} - Y_{2}}{\sin \alpha_{2-\Gamma}}.$$

Задание: 1) Вычислить полярные координаты d_1 , d_2 , β_1 и β_2 точек A и Γ ; 2) составить рабочий чертёж в масштабе 1 : 1000 для перенесения основных осей здания в натуру. Исходные данные приведены в таблице 1.

Таблица 1

Название точек	Х, м	У, м	α_{2-3}
Γ	1938,50	10001,5	141 ⁰ 10 ⁷ 00 ⁷⁷
A	1977,50	9994,5	
2	2000,00	10000, 00	

Вариант, выполняемой работы, определяется добавлением порядкового номера студента к исходным данным, представленных в таблице 1.

Контрольные вопросы:

- 1) Какие разбивочные элементы надо знать для перенесения проекта в натуру?
- 2) В чем состоит идея решения обратной геодезической задачи на координаты?
- 3) Какие элементы разбивки указываются на разбивочном чертеже?

Лабораторная работа №10 - Расчёт проектных уклонов и вынос их в натуру при строительстве дорог.

Цель работы: Научиться выполнять расчётные работы при определении проектных уклонов

Задание

- 1. Выполнить расчёт проектных уклонов с использованием лекционных материалов и дополнительной литературы.
 - 2. Вынести их в натуру.
 - 3. Определить объём земляных работ

Лабораторная работа 11 - Проверка геометрических элементов подъемных механизмов.

Цель работы: Научиться выполнять проверку геометрических элементов подъемных механизмов.

Задание:

1. Описать методы выполнения проверки геометрических элементов подъемных механизмов.

Лабораторная работа 12 - Вынос в натуру проектных осей линейных сооружений, подземных сооружений и их уклонов. Способы их закрепления на местности.

Задание:

- 1. Обработать пикетажный журнала и составить ведомость углов поворота, прямых и кривых
- 2. Подготовить презентацию по методам выноса в натуру проектных осей линейных сооружений, подземных сооружений и их уклонов. Способы их закрепления на местности.

Методические рекомендации: 1. На миллиметровой бумаге размером 20 х 50 см провести вдоль по середине прямую линию - трассу автодороги и обозначить на ней

пикеты через 5 см, так как масштаб пикетажного журнала принимаем 1: 2000. ПК 0 взять на пересечении утолщенных (жирных) линий миллиметровки.

Полностью скопировать общее для всех вариантов содержание журнала показать границы угодий и подписать их название, стрелками указать направление склонов рельефа, зарисовать типы реперов, выписать элементы закругления для первого угла поворота и расчет пикетажного положения главных точек закругления и др. В соответствии с заданным вторым углом поворота трассы и радиусом определить и записать против вершин углов поворотов элементы закругления. Для этого можно использовать таблицы (4,5) или вычисления произвести по формулам:

$$T = R \cdot tg \frac{\theta}{2}$$
; $K = \frac{\pi \cdot R \cdot \theta}{180}$; $E = R(\sec \frac{\theta}{2} - 1)$; Д= 2T - К

Правильность определений элементов закруглений следует проверить по формуле:

$$2\sum T - \sum K = \sum \mathcal{I}$$

2. Рассчитать пикетажное положение вершин углов поворотов и конца трассы. В соответствии с вычисленным пикетажным положением обозначим на трассе пикетажного журнала стрелками направление поворота трассы и вдоль стрелок написать румбы направлений.

Значение румбов получаем через дирекционные углы. Их определяем по формулам:

$$\alpha_{i+1} = \alpha_i + \theta_{np}$$
. или $\alpha_{i+1} = \alpha_i - \theta_{neb}$.

3. Рассчитать пикетажное положение главных точек закруглений начало кривой (НК), конец кривой (КК) по формулам:

$$HK = BV_i - T$$
; $KK = HK + K$

В соответствии с пикетажным положением отметить на трассе HK u KK для всех закруглений.

	УГЛЫ				КРИВЫЕ					ПРЯМЫЕ				
	IHBI	вели	величина		Элементы кривой, м полож		кение	длина		напра	вление			
№ угла	Положение вершины	алев.	аправ.	R	Т	K	Б	Д	НК	КК	пряма я вставк а Р, м	Рассто яние между верши нами углов S (м)	Дир екци онн ый угол α	Румб

Таблица 1 Ведомость углов поворота, прямых и кривых.

Задание: 1. Обработать пикетажный журнал (рис. 1)

- 2. Составить ведомость углов поворота прямых и кривых.(таблица 1)
- 1. Длины линий по трассе (общие для всех вариантов);

а) от начала трассы	(НТ) до вершины	первого угл	а поворота	трассы
(DV1)				2

(ВУІ)	226,50 M;
б) отВУ 1 доВУ2	147,20 м;
») от ВУ 2 до ВУЗ	166,55 м;
DATE DATE	155.65

2. Углы поворота трассы:

- а) первый угол поворота правый $\theta_{\rm пp}$. = 30° 15' (общий для всех вариантов)
- б) второй угол поворота левый $\theta_{\text{лев}}$. задается преподавателем;
- в) третий угол поворота левый $\theta_{\text{лев}}$, больше второго угла на $27^{\circ}30$ ":
- г) четвертый угол θ_{np} . меньше третьего угла на 23°50'.
- 3. Румб начального направления трассы ЮВ: 88° 40' (общий для всех вариантов).
- 4. Радиусы круговых кривых: на первом закруглении $R_1 = 200$ м, со второго по четвертый 100 метров (общие для всех вариантов).
- 5. Масштаб пикетажного журнала 1: 2000.

Методические рекомендации: Обработка нивелирного журнала.

1. Вычисление превышений между связующими точками. Превышение равно разности отсчётов на заднюю рейку а и переднею рейку b

$$h = a - b$$

2. Постраничный контроль выполняется, чтобы убедиться в правильности вычислений превышений.

$$\frac{\sum a - \sum b}{2} = \sum h_{cped}$$

3. Вычисление отметок связующих точек

$$H_{i+1} = H_i \pm h_{cpe_{\pi}}$$

- 4. Вычисление горизонта инструмента производится для тех станций, с которых нивелировались промежуточные точки. $\Gamma H = H_i + a$
- 5. Отметка промежуточных точек находится по формуле

$$H_{\text{пром.}} = \Gamma \mathbf{И} - \mathbf{c}$$

где с – отсчёт по рейке на промежуточную точку.

Задание: Обработать журнал технического нивелирования. Отсчеты по передней и задней рейкам в журнале геометрического нивелирования (общие для всех вариантов).

- 2. Отметка репера 1 = 129,129
- 3. Отметка репера 2 для всех вариантов берется на 1, 542 м больше отметки репера 1
- 4. Вариант, выполняемой работы, определяется добавлением порядкового номера студента к отметке репера 1.

Журнал технического нивелирования

No	Точки	C	Этсчёты по ј	ейке Превышения (h),			(h), мм	Гор.	Отметки
стан.	наблюд.	Задние	передние	Промежут.	Вычис.	Сред.	Увязан.	инст.	
I	Реп.1	0452							
		5137							
	ПК 0		1564						
			6251						-

		1.000		T	T T		<u> </u>
II	ПК 0	1608					
	l —	6296		<u> </u>			
	ПК 1		2011	_			
	 		6695	_			
III	ПК 1	0598		1			
	l 	5284		1			
	+20			2601			
	+32		0399				
	<u> </u>		5083			_	
IV	+32	2251				_	
	<u> </u>	6935				_	
	+70		0450	1			
_	<u> </u>	<u> </u>	5138			_	
V	+70	2003				1	<u> </u>
	 	6687		<u> </u>			
	ПК 2			1199			
	+22		0602			1	<u> </u>
	l 	0.5-	5287	<u> </u>		1	
VI	+22	0698		_			
		5281				1	
	X_1		2243	_			
	—————	2.5	6930			1	
VII	X_1	0373		_			
	<u> </u>	5057				_	
	ПК 3		2127			_	
<u> </u>			6809			_	
VIII	ПК 3	0749				1	
		5434	4.4	<u> </u>		1	
	ПК 4		1151				
	TT 4 .	02.15	5833				
IX	ПК 4	0343					
		5028	4 = 1.5	<u> </u>		1	
	ПК 5		1542				
		1021	6229				
X	ПК 5	1831		<u> </u>			
	TTT	6513	0.400				
	ПК 6		0428				
	TTY 0 -	2222	5113				
XI	ПК 6	2239		<u> </u>			
	TT 10	6926		150-			
	П-10			1537			
	П-20			2598			
	Л-12			2940			
	Л-20		0077	1646			
	X_2		0355	<u> </u>			
477 -	**	1515	5040	<u> </u>			
XII	X_2	1717					
	***	6401		04.50			
	ПК			0150			
	6+60			<u> </u>		į	, ,

	ПК 7		1399				
			6085				
XIII	ПК 7	2023					
		6708					
	ПК 8		0425				
			5106				
XIV	ПК 8	0936					
		5620					
	КТ			0625			
	Реп. 2		1495				
			6183				

Примечание: 1. Нивелир Н3. Рейки раскладные длиной 3 м, двухсторонние с разностью пяток 4685.

1. ПК 2 нивелировался, как промежуточная точка.

Контрольные вопросы

- 1) Дайте определение терминов «отметка», «превышение», «горизонт инструмента».
- 2) Чему равна допустимая невязка технического нивелирного хода?
- 3) Как вычисляется невязка превышений?
- 4) Как вычисляются отметки связующих точек?
- 5) Как вычисляются отметки промежуточных точек?

Лабораторная работа 13 - Закладка деформационных реперов на инженерных сооружениях.

Задание: Выполнить закладку реперов на зданиях

Лабораторная работа 14 - Натурные наблюдения за деформациями сооружений различными методами.

Задание:

- 1. Провести серию наблюдений с использование электронного тахеометра.
- 2. Выполнить расчётные и графические работы

Лабораторная работа 15. Изучение литературы по технике безопасности при проведении геодезических работ.

Задание:

1. Подготовить презентацию на тему «Техника безопасности при проведении геодезических работ при возведении инженерных сооружений»

